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1. INTRODUCTION 

     The Micropolar fluids are fluids with microstructure 
belonging to a class of fluids with nonsymmetrical stress 
sensor referred to as polar fluids. Physically, they 
represent fluids consisting of randomly oriented particles 
suspended in a viscous medium, and they are important 
to engineers and scientists working with 
hydrodynamic-fluid problems and phenomena. The 
concept of micropolar fluid deals with a class of fluids 
that exhibit certain microscopic effects arising from the 
micromotions of the fluid elements. These fluids contain 
dilute suspension of rigid macromolecules with 
individual motions that support stress and body moments 
and are influenced by spin inertia. Micropolar fluids are 
those which contain micro-constituents that can undergo 
rotation, the presence of which can affect the 
hydrodynamics of the flow so that it can be distinctly 
non-Newtonian. It has many practical applications, for 
example, analyzing the behavior of exotic lubricants, the 
flow of colloidal suspensions or polymeric fluids, liquid 
crystals, additive suspensions, human and animal blood, 
turbulent shear flow and so forth. 

The Joule heating effects on MHD free convection flow 
of a micropolar fluid have been investigated by 
El-Haikem et al. [1]. The MHD free convection and mass 
transfer flow in micropolar fluid with constant suction 
have been studied by El-Amin [2]. The MHD convective 
flow of a micropolar fluid past a continuously moving 
vertical porous plate in the presence of heat 
generation/absorption have been analyzed by Rahman 
and Sattar [3]. In the above mentioned papers, most of 
the previous works assume that the plate is at rest. The 
heat and mass transfer in MHD micrpoloar flow over a 

vertical moving porous plate in a porous medium have 
been studied by Kim [4]. The effects of radiation, free 
convection and mass transfer on an unsteady flow of a 
micropolar fluid over a vertical moving porous plate 
immersed in a porous medium with time varying suction 
have been analyzed by Kumar et al. [5]. The Joule 
heating and thermal diffusion effects on unsteady MHD 
free convective heat and mass transfer flow of a 
micropolar fluid through a vertical infinite porous 
medium under the action of a transverse magnetic field 
taking into account a constant heat source with constant 
heat and mass fluxes have been investigated by Haque 
and Alam [6]. 

Hence our aim of this work is to extend the work of 
Haque and Alam [6] with chemical reaction effects. The 
problem has been solved by implicit finite difference 
method (Carnahan et al. [7]). The governing equations 
involved in this problem have been transformed into 
dimensionless non-similar coupled partial differential 
equation by usual transformations. Finally, the 
qualitative comparison of the present results with the 
results of Haque and Alam [6] has been shown.  

 
2. MATHEMATICAL FORMULATIONS 

     The unsteady MHD mixed convective heat and mass 
transfer flow of an electrically conducting 
incompressible viscous fluid past an electrically 
nonconducting isothermal infinite permeable impulsive 
vertical plate with thermal diffusion and diffusion 
thermo effects have been considered. The effects of 
internal heat generation, joule heating, viscous 
dissipation and chemical reaction have been also 
considered.  The positive x  coordinate is measured 
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Fig 1: Physical configuration and coordinate system. 
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along the plate in the direction of fluid motion and the 
positive y  coordinate is measured normal to the plate. 
Initially, it is considered that the plate as well as the fluid 
is at the same temperature ( )∞= TT  and concentration 
level ( )∞= CC . Also it is assumed that the fluid and the 
plate is at rest after that the plate is to be moving with a 
constant velocity ∞U  in its own plane. Instantaneously 
at time 0>t , the temperature of the plate and spices 
concentration are raised to ( )∞> TTw  and ( )∞> CCw  
respectively, which are there after maintained constant, 
where wT , wC  are temperature and spices concentration 
at the wall  and ∞T , ∞C  are the temperature and 
concentration of the species outside the plate respectively. 
The physical configuration of the problem is furnished in 
Figure 1.  

 

 

 

 

 

 

 

 

 

 

 

A strong uniform magnetic field H  is imposed parallel 
to the −y axis and it can be taken as ( )0,,0 0H . The 
magnetic Reynolds number of the flow is taken to be 
small enough field and the magnetic field is negligible in 
comparison with applied magnetic field and the magnetic 
lines are fixed relative to the fluid. Using the relation 

0=⋅∇ J  for the current density ( )zyx J,J,J=J  where 

constant=yJ . Since the plate is nonconducting, 0=yJ  
at the plate and hence zero everywhere.  

If the plate is infinite in extent and hence all physical 
quantities depend on y  and t . Within the above 
framework of the above stated assumptions and using the 
dimensionless quantities,   
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relevant to the unsteady two dimensional problem is 
governed by the following  non-dimensional system of 
coupled nonlinear partial differential equations under the 
boundary layer approximations as; 
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with the corresponding boundary conditions are; 
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∂
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3. SHEAR STRESS, COUPLE STRESS, 
NUSSELT AND SHERWOOD NUMBER 

     From the velocity field, the effects of various 
parameters on the shear stress have been calculated. The 
following equation represents the shear stress at the plate, 
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field, the effects of various parameters on the couple 
stress have been analyzed. The following equation 
represents the couple stress at the wall, 
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From the temperature field, the effects of various 
parameters on the heat transfer coefficients have been 
analyzed. The following equation represents the heat 
transfer rate that is well known Nusselt number, the 

Nusselt number,  
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Fig.2: Implicit finite difference system grid. 
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field, the effects of various parameters on the mass 
transfer coefficients have been studied. The following 
equation represents mass transfer rate that is well known 
Sherwood number, the Sherwood number,  
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4. NUMERICAL SOLUTIONS 

     To solve the non-dimensional system by the implicit 
finite difference technique, it is required a set of finite 
difference equations. In this case, the region within the 
boundary layer is divided by some perpendicular lines of 
Y -axis, where Y -axis is normal to the medium as shown 
in Figure 2. It has been assumed that the maximum 
length of boundary layer is ( )10max =Y  as corresponds to 

∞→Y  i.e. Y  varies from 0  to 10  and the number of 
grid spacing in Y  directions is ( )100=p , hence the 
constant mesh size along Y  axis becomes 

( )10010.0 ≤≤=∆ YY  with a smaller time-step 
001.0=∆τ . 

 
 
 
 
 

 
 
 

 
 
 
 
Let nnn TΓU ,,  and nC  denote the values of 

TΓU ,,  and C  at the end of a time-step respectively. 
Using the implicit finite difference approximation, the 
following appropriate set of finite difference equations 
are obtained as; 
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with the boundary conditions, 
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Here the subscript k  designates the grid points with Y  
coordinate and the superscript n  represents a value of 
time, ττ ∆= n  where .....,....2,1,0=n . The velocity 
( )U , angular velocity ( )Γ , temperature ( )T  and 
concentration ( )C  distributions at all interior nodal 
points may be computed by successive applications of the 
above finite difference equations. The numerical values 
of the shear stresses, Nusselt number and Sherwood 
number are evaluated by Five-point approximate 
formula for the derivatives. The stability conditions are 
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approach to zero then the problem will be converged. 
That’s mean the results of the implicit finite difference 
method approach the true solutions. 
 

5. RESULTS AND DISCUSSION 
     To investigate the physical situation of the problem, 
the numerical results and graphs of dimensionless 
velocity ( )U , angular velocity ( )Γ , temperature ( )T  
and concentration ( )C  within the boundary layer have 
been computed for different values of ε , Δ , rG , M , 
Λ , λ , R , rP , uD , cE , β , cS , rS  and γ  with the 

help of a computer programming language Compaq 
Visual Fortran 6.6a. Using Tecplot 7 these computed 
numerical results have been shown graphically. To obtain 
the steady-state solutions, the computations have been 
carried out up to dimensionless time, 80=τ . It is 
observed that the numerical values of CTΓU and,,  
however, show little changes after 20=τ . Hence at 

20=τ  the solutions of all variables are steady-state 
solutions.  
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To observe the physical situation of the problem, the 
shear stress, couple stress, Nusselt number and 
Sherwood number have been illustrated in figures 3-13. 
The effects of various values of Suction parameter ( )ε , 
Grashof number ( )rG , Magnetic parameter ( )M , Soret 
number ( )rS , Microrotational number ( )Δ  and Eckert 
number ( )cE  on shear stress in case of cooling plate are 
presented in figures 3-5 respectively. It is observed that 
the shear stress increases with the increase of Grashof 
number and Soret number while decreases with the 
increase Suction parameter and Magnetic parameter. 
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Fig.3: Shear stress for ε , where 00.1=rG , 00.1=mG , 

00.1=M , 00.2=Δ , 00.2=Λ , 50.0=λ , 15.0=R , 
71.0=rP , 20.0=uD , 50.0=cE , 50.0=β , 

60.0=cS , 20.0=rS , 00.1=γ  and 50.0=S . 
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Fig.4: Shear stress for rG , M and rS , where 00.2=ε , 

00.1=mG ,  00.2=Δ , 00.2=Λ , 50.0=λ , 15.0=R , 
71.0=rP , 20.0=uD , 50.0=cE , 50.0=β , 

60.0=cS , 00.1=γ  and 50.0=S . 
 

20 40 60 80
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1

1

2

2

3

3
4

4

5

5

   
Fig.5: Shear stress for Δ  and cE , where 00.2=ε ,  

00.1=rG , 00.1=mG , 00.1=M , 00.2=Λ , 50.0=λ , 
15.0=R , 71.0=rP , 20.0=uD , 50.0=β , 60.0=cS , 

20.0=rS , 00.1=γ  and 50.0=S . 
 
In figures 6 and 7 display the effects of various values of 
Suction parameter ( )ε , Spin gradient viscosity ( )Δ  and 
Vortex viscosity ( )λ  on couple stress have been shown 
respectively. These results show that the couple stress 
increases with the increase of Spin gradient viscosity 
while decreases with the increase Suction parameter and 
Vortex viscosity.  
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Fig.6: Couple stress for ε , where 00.1=rG , 00.1=mG , 

00.1=M , 00.2=Δ , 00.2=Λ , 50.0=λ , 15.0=R , 
71.0=rP , 20.0=uD , 50.0=cE , 50.0=β , 

60.0=cS , 20.0=rS , 00.1=γ  and 50.0=S . 
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Fig.7: Couple stress for Λ  and λ , where 00.2=ε ,  

00.1=rG , 00.1=mG , 00.1=M , 00.2=Δ , 15.0=R , 
71.0=rP , 20.0=uD , 50.0=cE , 50.0=β , 60.0=cS , 

20.0=rS , 00.1=γ  and 50.0=S . 
 
In figures 8-12 display the Nusselt number for various 
values of Suction parameter ( )ε , Microrotational 
number ( )Δ  Eckert number ( )cE , Radiation parameter 
( )R , Dufour number ( )uD , Prandtl number ( )rP  and 
Heat generation or absorption parameter ( )β  
respectively. It is noted that 0<β  and 0>β  are 
treated as heat absorption and genaration respectively. 
These results show that the Nusselt number increases 
with the increase of Suction parameter, Microrotational 
number and Prandtl numbver while decreases with the 
increase of Eckert number, Radiation parameter, Dufour 
number and Heat generation or absorption parameter.  
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Fig.8: Nusselt number for ε , where 00.1=rG , 

00.1=mG , 00.1=M , 00.2=Δ , 00.2=Λ , 50.0=λ , 
15.0=R , 71.0=rP , 20.0=uD , 50.0=cE , 50.0=β , 

60.0=cS , 20.0=rS , 00.1=γ  and 50.0=S . 
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Fig.9: Nusselt number for Δ  and cE , where 00.2=ε ,  

00.1=rG , 00.1=mG , 00.1=M , 00.2=Λ , 50.0=λ , 
15.0=R , 71.0=rP , 20.0=uD , 50.0=β , 60.0=cS , 

20.0=rS , 00.1=γ  and 50.0=S . 
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Fig.10: Nusselt number R  and uD , where 00.2=ε ,  

00.1=rG , 00.1=mG , 00.1=M , 002.Δ = , 00.2=Λ , 
50.0=λ , 71.0=rP , 50.0=cE , 50.0=β , 60.0=cS , 

20.0=rS , 00.1=γ  and 50.0=S . 
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Fig.11: Nusselt number rP  and β , where 00.2=ε ,  

00.1=rG , 00.1=mG , 00.1=M , 002.Δ = , 00.2=Λ , 
50.0=λ , 15.0=R , 20.0=uD , 50.0=cE , 60.0=cS , 

20.0=rS , 00.1=γ  and 50.0=S . 
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uN  

τ  

Curves    rP    
              71.0  
              00.7  
                                             

uN  

τ  

   Curves    ε  
      1        00.2  
      2        50.2  
      3        00.3  
      4        50.3  
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The effects of Suction parameter ( )ε  on Sherwood 
number have been illustrated in figure 12. It is noted that 
Sherwood number increases with the increase of Suction 
parameter. In figure 13 displays the Sherwood number 
for several values of Chemical reaction parameter ( )γ  
with two values of Schimdt number 60.0=cS  (water 
vapor) and 94.0=cS  (carbon dioxide) respectively. 
These results show that the Sherwood number increases 
with the increase of Chemical reaction parameter and 
Schimdt number.  
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Fig.12: Sherwood number for ε , where 00.1=rG , 

00.1=mG , 00.1=M , 00.2=Δ , 00.2=Λ , 50.0=λ , 
15.0=R , 71.0=rP , 20.0=uD , 50.0=cE , 50.0=β , 

60.0=cS , 20.0=rS , 00.1=γ  and 50.0=S . 
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Fig.13: Sherwood number cS  and γ , where 00.2=ε ,  

00.1=rG , 00.1=mG , 00.1=M , 002.Δ = , 00.2=Λ , 
50.0=λ , 15.0=R , 71.0=rP , 20.0=uD , 50.0=cE , 

20.0=rS  and 50.0=S . 
 

6. CONCLUSIONS  
     The implicit finite difference solution of unsteady 
MHD chemically reacting radiative micropolar fluid 
flow over an impulsive vertical porous plate in the 
presence of heat generation, Joule heating and viscous 
dissipation has been studied. The physical properties are 
discussed for different values of parameters and 
compared our results with Haque and Alam’s [6]. Some 
important findings of this investigation are listed below, 

1. The shear stress increases with the increase of rG  and 

rS  while decreases with the increase ε  and M . 
2.  The couple stress increases with the increase of Λ  
where as decreases with the increase ε  and λ . 
3.  The Nusselt number increases with the increase of ε , 
Δ , and rP  while decreases with the increase of cE , R , 

uD  and β . 
4. The Sherwood number increases with the increase of 
ε , γ  and cS . 
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8. NOMENCLATURE 

 
Symbol Meaning Unit 

T Temperature (K) 
C Concentration (Kg/m3) 
T Wall temperature w (K) 
C Wall concentration w (Kg/m3) 
u Velocity component (ms-1) 
Ω Angular velocity (rad/s) 
y Cartesian Coordinate  

 

  Curves      γ  
      1      60.0−  
      2      10.0−  
      3        00.0  
      4        10.0  
      5        60.0  
 

hS  

τ  

Curves    cS    
              60.0  
              94.0  
                                             

hS  

τ  

   Curves    ε  
      1        00.2  
      2        50.2  
      3        00.3  
      4        50.3  
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